metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(5,8-diazoniadispiro[4.2.4.2]tetradecane) hexakis(thiocyanato- κN)manganate(II)

Yu-Xiao Li,^a Xiao-Ling Guo,^b Zheguang Wang^c and Yunyin Niu^b*

^aPhysical Engineering College, Zhengzhou University, Zhengzhou 450052, People's Republic of China, ^bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, and ^cCollege of Information and Management Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China

Correspondence e-mail: niuyy@zzu.edu.cn

Received 14 August 2007; accepted 13 September 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.005 Å; R factor = 0.046; wR factor = 0.141; data-to-parameter ratio = 16.8.

The asymmetric unit of the title compound, $(C_{12}H_{24}N_2)_2$ - $[Mn(NCS)_6]$, comprises one cation and one half of the anion. The central Mn atom of the anion is situated on an inversion centre and shows the expected octahedral coordination with only minor deviations from the ideal geometry. Intermolecular C-H···S hydrogen-bonding interactions link all components into a three-dimensional network.

Related literature

For structures containing the complex $[Ni(NCS)_6]^{4-}$ anion, see, for example, Böhland et al. (1997); Bose et al. (2006); Burla et al. (1995); Shen et al. (2002); Shi et al. (2005).

Experimental

Crystal data

 $(C_{12}H_{24}N_2)_2 \cdot [Mn(NCS)_6]$ $M_r = 796.08$ Monoclinic, $P2_1/n$ a = 9.8816 (15) Åb = 13.382 (2) Å c = 15.173 (2) Å $\beta = 102.431 \ (3)^{\circ}$

V = 1959.4 (5) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.69 \text{ mm}^{-1}$ T = 273 (2) K $0.53 \times 0.15 \times 0.12 \ \text{mm}$

Data collection

10582 measured reflections
3589 independent reflections
2679 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.024$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	214 parameters
$wR(F^2) = 0.141$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.51 \ {\rm e} \ {\rm \AA}^{-3}$
3589 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

 $2\sigma(I)$

Table 1 Selected bond lengths (Å).

Mn1-N1	2.223 (3)	Mn1-N3	2.248 (3)
Mn1-N2	2.239 (3)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7-H7A\cdots S3^{i}$ $C10-H10B\cdots S3^{ii}$	0.97 0.97	2.81 2.84	3.629 (3) 3.750 (3)	143 157
Summatry addry (i) $x = 1$ $y = 1$ $z = 1$ (ii) $x = 1$ $y = z$				

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation (grant No. 20671083), the Henan Province Excellent Youth Foundation (grant No. 0612002800) and Jinan Henghua Science and Technology Co. Ltd for supporting this work. We also thank Wuhan University for the diffraction measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2137).

References

Böhland, H., Hartung, H., Baumeister, U., Koenig, G. & Matthäus, R. (1997). Microchim. Acta, 125, 149-152.

Bose, D., Mostafa, G., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2006). Polyhedron, 25, 663-670.

- Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Chiari, B., Cinti, A. & Piovesana, O. (1995). Mol. Cryst. Liq. Cryst. Sci. Technol. A: Mol. Cryst. Liq. Cryst. 273, 649-655.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

- Shen, L., Xu, X., Xu, D.-J. & Xu, Y.-Z. (2002). Wuji Huaxue Xuebao (Chin. J. Inorg. Chem.), 18, 309-312.
- Shi, J.-M., Xu, W., Zhao, B., Cheng, P., Liao, D.-Z. & Chen, X.-Y. (2005). Eur. J. Inorg. Chem. pp. 55-58.

Acta Cryst. (2007). E63, m2568 [doi:10.1107/S1600536807044753]

Bis(5,8-diazoniadispiro[4.2.4.2]tetradecane) hexakis(thiocyanato-KN)manganate(II)

Y.-X. Li, X.-L. Guo, Z. Wang and Y. Niu

Comment

Organic-inorganic compounds containing the [hexakis(isothiocyanato)manganese(II)] anion, $[Mn(NCS)_6]^{4-}$, have been the subject of several investigations, but reported crystal structures containing this building unit are relatively scarce (Böhland *et al.* (1997); Bose *et al.* (2006); Burla *et al.* (1995); Shen *et al.* (2002); Shi *et al.* (2005). In this communication we report the crystal structure of a new [hexakis(isothiocyanato)manganese(II)] salt containing the 5,8-diazoniadispiro[4.2.4.2]tetradecane counter cation.

The structure of the title compound (Fig. 1) comprises discrete $(C_{12}H_{24}N_2)^{2+}$ cations and $[Mn(NCS)_6]^{4-}$ anions. The anion, which lies on an inversion center, displays the expected homoleptic N₆-octahedral coordination with only minor deviations from the ideal geometry. In the cation, the six-membered ring displays a chair conformation, while the five-membered rings adopt a twist conformation. In the crystal structure, all building units are linked into a three-dimensional extended network *via* intermolecular C—H···S hydrogen bonding interactions (Table, Fig. 2).

Experimental

All chemicals were used as purchased from Jinan Henghua Sci. & Tec. Co., Ltd. The title salt was synthesized from the reaction of 5,8-diazoniadispiro[4.2.4.2]tetradecane dibromide (0.034 g, 0.1 mmol) in methanol (5 ml) and a mixture of MnCl₂ (0.012 g, 0.1 mmol) and K(NCS) (0.074 g, 0.4 mmol) in DMF (10 ml). The resulting mixture was set aside for the formation of colourless crystals in approximately 34% yield after several d. Anal. Calc. for $C_{30}H_{48}MnN_{10}S_6$: C 45.26, H 6.07, N 17.59%; Found: C 45.21, H 6.08, N 17.52%.

Refinement

All H atoms bonded to C atoms were generated geometrically and refined as riding atoms with C—H= 0.97Å and $U_{iso}(H)$ = 1.2 $U_{eq}(C)$.

Figures

Bis(5,8-diazoniadispiro[4.2.4.2]tetradecane) hexakis(thiocyanato-κN)- manganate(II)

Crystal o	data
-----------	------

$(C_{12}H_{24}N_2)_2 \cdot [Mn(NCS)_6]$	$F_{000} = 838$
$M_r = 796.08$	$D_{\rm x} = 1.349 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2869 reflections
<i>a</i> = 9.8816 (15) Å	$\theta = 2.3 - 23.4^{\circ}$
b = 13.382 (2) Å	$\mu = 0.69 \text{ mm}^{-1}$
c = 15.173 (2) Å	T = 273 (2) K
$\beta = 102.431 \ (3)^{\circ}$	Fragment, colorless
V = 1959.4 (5) Å ³	$0.53 \times 0.15 \times 0.12 \text{ mm}$
Z = 2	

Data collection

3589 independent reflections
2679 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.024$
$\theta_{\text{max}} = 25.5^{\circ}$
$\theta_{\min} = 2.1^{\circ}$
$h = -10 \rightarrow 11$

$T_{\min} = 0.710, \ T_{\max} = 0.922$	$k = -16 \rightarrow 16$
10582 measured reflections	$l = -18 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained
$wR(F^2) = 0.141$	$w = 1/[\sigma^2(F_0^2) + (0.0826P)^2 + 0.6082P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
3589 reflections	$\Delta \rho_{max} = 0.51 \text{ e} \text{ Å}^{-3}$
214 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.5000	0.5000	0.0000	0.0522 (2)
S1	0.39777 (8)	0.43111 (6)	0.30277 (5)	0.0629 (2)
S2	0.96283 (13)	0.64089 (10)	0.14596 (8)	0.1117 (5)
S3	0.69183 (9)	0.15133 (6)	0.01699 (7)	0.0737 (3)
N1	0.4577 (3)	0.4769 (2)	0.1366 (2)	0.0731 (8)
N2	0.7113 (3)	0.5556 (2)	0.06566 (19)	0.0698 (7)
N3	0.5748 (3)	0.3416 (2)	-0.0022 (2)	0.0718 (7)
N4	-0.0605 (2)	0.31563 (18)	0.21676 (15)	0.0522 (6)
N5	0.1560 (2)	0.23697 (15)	0.12676 (15)	0.0454 (5)
C1	0.4340 (3)	0.4584 (2)	0.2058 (2)	0.0535 (7)
C2	0.8136 (4)	0.5917 (2)	0.1000 (2)	0.0588 (7)
C3	0.6225 (3)	0.2633 (2)	0.00443 (18)	0.0518 (7)
C4	-0.2133 (3)	0.3136 (4)	0.2228 (3)	0.0870 (12)
H4A	-0.2701	0.3484	0.1719	0.104*
H4B	-0.2461	0.2454	0.2235	0.104*
C5	-0.2180 (5)	0.3621 (7)	0.3035 (4)	0.0778 (9)

H5A	-0.2162	0.3127 0.3506		0.208*
H5B	-0.3042	0.3990	0.2962	0.208*
C6	-0.1051 (4)	0.4288 (3)	0.3302 (3)	0.0796 (11)
H6A	-0.0737	0.4286	0.3953	0.095*
H6B	-0.1324	0.4962	0.3108	0.095*
C7	0.0067 (3)	0.3931 (3)	0.2866 (2)	0.0624 (8)
H7A	0.0811	0.3631	0.3309	0.075*
H7B	0.0441	0.4481	0.2577	0.075*
C8	0.0024 (3)	0.2135 (2)	0.2360 (2)	0.0582 (7)
H8A	0.0033	0.1959	0.2982	0.070*
H8B	-0.0551	0.1651	0.1975	0.070*
C9	0.1473 (3)	0.2074 (2)	0.22088 (19)	0.0544 (7)
H9A	0.1811	0.1396	0.2322	0.065*
H9B	0.2068	0.2509	0.2636	0.065*
C10	-0.0488 (3)	0.3443 (2)	0.12343 (19)	0.0520 (7)
H10A	-0.0841	0.4116	0.1107	0.062*
H10B	-0.1055	0.2996	0.0804	0.062*
C11	0.0972 (3)	0.33998 (19)	0.11145 (18)	0.0483 (6)
H11A	0.1000	0.3614	0.0508	0.058*
H11B	0.1537	0.3857	0.1535	0.058*
C12	0.3072 (3)	0.2362 (2)	0.1172 (2)	0.0666 (8)
H12A	0.3218	0.2839	0.0720	0.080*
H12B	0.3695	0.2518	0.1742	0.080*
C13	0.3285 (4)	0.1318 (3)	0.0886 (3)	0.0802 (10)
H13A	0.4034	0.1289	0.0565	0.096*
H13B	0.3503	0.0877	0.1404	0.096*
C14	0.1949 (3)	0.1030 (3)	0.0284 (2)	0.0731 (9)
H14A	0.1782	0.0321	0.0339	0.088*
H14B	0.1970	0.1173	-0.0340	0.088*
C15	0.0839 (3)	0.1620 (2)	0.0562 (2)	0.0565 (7)
H15A	0.0237	0.1185	0.0817	0.068*
H15B	0.0284	0.1966	0.0047	0.068*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0530 (4)	0.0457 (3)	0.0566 (4)	0.0007 (3)	0.0087 (3)	0.0067 (3)
S1	0.0679 (5)	0.0649 (5)	0.0582 (5)	0.0009 (4)	0.0187 (4)	-0.0070 (3)
S2	0.1121 (9)	0.1153 (9)	0.0864 (7)	-0.0565 (7)	-0.0255 (6)	0.0210 (6)
S3	0.0617 (5)	0.0549 (5)	0.0956 (6)	0.0095 (4)	-0.0032 (4)	-0.0172 (4)
N1	0.083 (2)	0.0689 (18)	0.0693 (19)	-0.0124 (15)	0.0204 (15)	0.0036 (14)
N2	0.0604 (17)	0.0664 (17)	0.0783 (18)	-0.0023 (14)	0.0056 (14)	0.0072 (14)
N3	0.0711 (18)	0.0584 (16)	0.0807 (19)	0.0109 (14)	0.0051 (14)	0.0068 (13)
N4	0.0405 (12)	0.0662 (15)	0.0518 (13)	-0.0041 (10)	0.0139 (10)	-0.0138 (11)
N5	0.0430 (12)	0.0385 (11)	0.0553 (13)	0.0046 (9)	0.0114 (9)	-0.0018 (9)
C1	0.0552 (17)	0.0427 (14)	0.0621 (19)	-0.0016 (12)	0.0113 (13)	-0.0049 (13)
C2	0.074 (2)	0.0470 (16)	0.0533 (17)	-0.0013 (15)	0.0080 (15)	0.0052 (13)
C3	0.0477 (15)	0.0569 (18)	0.0479 (15)	-0.0028 (13)	0.0039 (12)	-0.0076 (12)

C4	0.0441 (17)	0.132 (3)	0.090 (3)	-0.0091 (19)	0.0240 (16)	-0.042 (2)
C5	0.0744 (19)	0.0477 (15)	0.088 (2)	0.0017 (14)	0.0370 (16)	-0.0168 (15)
C6	0.070 (2)	0.095 (3)	0.076 (2)	0.0153 (19)	0.0188 (17)	-0.0264 (19)
C7	0.0552 (17)	0.075 (2)	0.0581 (17)	-0.0022 (15)	0.0149 (13)	-0.0236 (15)
C8	0.0688 (19)	0.0582 (17)	0.0488 (16)	-0.0111 (14)	0.0153 (13)	0.0041 (13)
C9	0.0574 (17)	0.0454 (15)	0.0568 (17)	0.0082 (13)	0.0048 (13)	0.0071 (12)
C10	0.0508 (16)	0.0533 (16)	0.0502 (15)	0.0141 (12)	0.0073 (11)	-0.0029 (12)
C11	0.0579 (16)	0.0384 (13)	0.0520 (15)	0.0039 (11)	0.0194 (12)	0.0035 (11)
C12	0.0456 (16)	0.067 (2)	0.092 (2)	0.0008 (14)	0.0249 (15)	-0.0129 (17)
C13	0.068 (2)	0.077 (2)	0.104 (3)	0.0157 (18)	0.034 (2)	-0.014 (2)
C14	0.076 (2)	0.082 (2)	0.067 (2)	0.0044 (18)	0.0292 (17)	-0.0226 (17)
C15	0.0619 (18)	0.0507 (16)	0.0554 (16)	0.0044 (13)	0.0097 (13)	-0.0101 (13)

Geometric parameters (Å, °)

Mn1—N1	2.223 (3)	С6—С7	1.483 (4)
Mn1—N1 ⁱ	2.223 (3)	С6—Н6А	0.9700
Mn1—N2 ⁱ	2.239 (3)	С6—Н6В	0.9700
Mn1—N2	2.239 (3)	С7—Н7А	0.9700
Mn1—N3 ⁱ	2.248 (3)	С7—Н7В	0.9700
Mn1—N3	2.248 (3)	C8—C9	1.500 (4)
S1—C1	1.629 (3)	C8—H8A	0.9700
S2—C2	1.628 (3)	C8—H8B	0.9700
S3—C3	1.641 (3)	С9—Н9А	0.9700
N1—C1	1.150 (4)	С9—Н9В	0.9700
N2—C2	1.140 (4)	C10-C11	1.493 (4)
N3—C3	1.144 (4)	C10—H10A	0.9700
N4—C10	1.496 (4)	C10—H10B	0.9700
N4—C8	1.504 (4)	C11—H11A	0.9700
N4—C7	1.528 (4)	C11—H11B	0.9700
N4—C4	1.532 (4)	C12—C13	1.492 (5)
N5—C11	1.494 (3)	C12—H12A	0.9700
N5—C9	1.502 (4)	C12—H12B	0.9700
N5—C15	1.527 (3)	C13—C14	1.486 (5)
N5—C12	1.532 (3)	С13—Н13А	0.9700
C4—C5	1.396 (5)	С13—Н13В	0.9700
C4—H4A	0.9700	C14—C15	1.485 (4)
C4—H4B	0.9700	C14—H14A	0.9700
C5—C6	1.417 (6)	C14—H14B	0.9700
C5—H5A	0.9700	C15—H15A	0.9700
С5—Н5В	0.9700	C15—H15B	0.9700
N1—Mn1—N1 ⁱ	180.00 (15)	N4—C7—H7A	110.6
N1—Mn1—N2 ⁱ	91.38 (11)	С6—С7—Н7В	110.6
N1 ⁱ —Mn1—N2 ⁱ	88.62 (11)	N4—C7—H7B	110.6
N1—Mn1—N2	88.62 (11)	H7A—C7—H7B	108.7
N1 ⁱ —Mn1—N2	91.38 (11)	C9—C8—N4	112.8 (2)
N2 ⁱ —Mn1—N2	180.0	С9—С8—Н8А	109.0

N1—Mn1—N3 ⁱ	89.36 (11)	N4—C8—H8A	109.0
N1 ⁱ —Mn1—N3 ⁱ	90.64 (11)	С9—С8—Н8В	109.0
N2 ⁱ —Mn1—N3 ⁱ	92.38 (10)	N4—C8—H8B	109.0
N2—Mn1—N3 ⁱ	87.62 (10)	H8A—C8—H8B	107.8
N1—Mn1—N3	90.64 (11)	C8—C9—N5	112.5 (2)
N1 ⁱ —Mn1—N3	89.36 (11)	С8—С9—Н9А	109.1
N2 ⁱ —Mn1—N3	87.62 (10)	N5—C9—H9A	109.1
N2—Mn1—N3	92.38 (10)	С8—С9—Н9В	109.1
N3 ⁱ —Mn1—N3	180.0	N5—C9—H9B	109.1
C1—N1—Mn1	175.4 (3)	Н9А—С9—Н9В	107.8
C2—N2—Mn1	174.0 (3)	N4—C10—C11	112.3 (2)
C3—N3—Mn1	173.1 (3)	N4—C10—H10A	109.1
C10—N4—C8	107.7 (2)	C11—C10—H10A	109.1
C10—N4—C7	111.8 (2)	N4—C10—H10B	109.1
C8—N4—C7	112.5 (2)	C11—C10—H10B	109.1
C10—N4—C4	109.8 (2)	H10A—C10—H10B	107.9
C8—N4—C4	110.1 (3)	N5-C11-C10	111.7 (2)
C7—N4—C4	104.9 (2)	N5-C11-H11A	109.3
C11—N5—C9	106.9 (2)	C10—C11—H11A	109.3
C11—N5—C15	113.0 (2)	N5-C11-H11B	109.3
C9—N5—C15	112.3 (2)	C10—C11—H11B	109.3
C11—N5—C12	110.2 (2)	H11A—C11—H11B	107.9
C9—N5—C12	110.2 (2)	C13—C12—N5	103.6 (2)
C15—N5—C12	104.3 (2)	C13—C12—H12A	111.0
N1—C1—S1	178.9 (3)	N5-C12-H12A	111.0
N2—C2—S2	177.6 (3)	C13—C12—H12B	111.0
N3—C3—S3	178.4 (3)	N5-C12-H12B	111.0
C5—C4—N4	105.3 (3)	H12A—C12—H12B	109.0
C5—C4—H4A	110.7	C14—C13—C12	105.0 (3)
N4—C4—H4A	110.7	C14—C13—H13A	110.7
C5—C4—H4B	110.7	C12—C13—H13A	110.7
N4—C4—H4B	110.7	C14—C13—H13B	110.7
H4A—C4—H4B	108.8	C12—C13—H13B	110.7
C4—C5—C6	111.7 (4)	H13A—C13—H13B	108.8
C4—C5—H5A	109.3	C13—C14—C15	107.5 (3)
C6—C5—H5A	109.3	C13—C14—H14A	110.2
C4—C5—H5B	109.3	C15—C14—H14A	110.2
С6—С5—Н5В	109.3	C13—C14—H14B	110.2
H5A—C5—H5B	107.9	C15—C14—H14B	110.2
C5—C6—C7	106.6 (3)	H14A—C14—H14B	108.5
С5—С6—Н6А	110.4	C14—C15—N5	106.7 (2)
С7—С6—Н6А	110.4	C14—C15—H15A	110.4
С5—С6—Н6В	110.4	N5—C15—H15A	110.4
С7—С6—Н6В	110.4	C14—C15—H15B	110.4
Н6А—С6—Н6В	108.6	N5-C15-H15B	110.4
C6—C7—N4	105.9 (2)	H15A—C15—H15B	108.6
С6—С7—Н7А	110.6		

Symmetry codes: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A		
C7—H7A····S3 ⁱⁱ	0.97	2.81	3.629 (3)	143		
C10—H10B···S3 ⁱⁱⁱ	0.97	2.84	3.750 (3)	157		
Symmetry codes: (ii) $x-1/2$, $-y+1/2$, $z+1/2$; (iii) $x-1$, y , z .						

